
International Journal of Scientific & Engineering Research, Volume 3, Issue 5, May-2012 1
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

Improve the Evolutionary Algorithm Search
Efficiency with SAT Problem

Rasha Abdelkawy, Dr. Walid Gomaa, Dr. Soheir foad

Abstract— Since the 1990s, the use of incomplete algorithm for solving the SAT problem has grown quickly. Even though the incomplete

algorithm is unable to prove unsatisfiability, but it may find solutions for a satisfying problem quickly. In this paper, the improvement of GA

Performance in solving the 3-SAT Problem was our main objective and it is shown that the GA can be more efficient if SAT problem-knowledge

is oriented in the GA encoding phase, and the GA operators is tuned according to the encoding phase gained knowledge. In this aspect, a novel

evolutionary local search algorithm is developed. In this paper the first Part of our research will be presented, that Part of improve the EAs

search Performance with the SAT Problem, that was integrated later in evolutionary local search algorithm. The EAs Enhancement was

assessed using a set of well-known benchmarks that includes instances with different sizes, and compared with blind EAs algorithm.

Index Terms— Genetic Algorithms, Preprocessing algorithm, Genetics encoding, SAT Problem, Incomplete Solver.

—————————— ——————————

1 INTRODUCTION

Given a conjunctive normal form (CNF) propositional
formula where the formula is defined as a conjunction
(AND, ∧) of clauses, where each clause is a disjunction
(OR, ∨) of literals, and each literal is either a variable or its
negation (NOT, ￢). The Boolean Satisfiability Problem
(SAT) is defined as the following: Given a CNF formula F,
does F have a satisfying assignment? Interest in
Satisfiability is expanding for a variety of reasons, not in
the least because nowadays more problems are being
solved faster by SAT solvers than other means [14].This is
probably because Satisfiability stands at the crossroads of
logic, graph theory, computer science, computer
engineering, and operations research. Thus, many
problems originating in one of these fields typically have
multiple translations to Satisfiability and there exist many
mathematical tools available to the SAT solver to assist in
solving them with improved performance [15]. Techniques
have two-sided error, they cannot determine that a formula
is unsatisfiable, and may not find a solution when the
formula is satisfiable.
One of the key motivations for studying incomplete
techniques was the finding that complete algorithms
perform quite poorly on certain randomly generated
formulas. Also, most of the incomplete methods can work
as a solution approach for the problem of maximum
satisfiability, or MAX-SAT problem by providing the ―best
found‖ truth assignment upon termination.
Incomplete methods are based on heuristic algorithms,

such as algorithms based on translation to Integer
Programming, Finite Learning Automata, local search,
simulated annealing, tabu search, and evolutionary
algorithms [1,3,17]. A more comprehensive description of
Boolean Satisfiability and basic algorithms to solve is
provided at [13]. There have also been attempts at hybrid
approaches that explore combining ideas from two or more
heuristic algorithms, such as Evolution Algorithms and
local search techniques [4, 5, 6, 7, and 8].

The rest of this paper is organized as follows: Section 2,
presents a historical resume of handling SAT problem with
Evolutionary Algorithms and Local search. In section 3, a
detailed description of the GA representation issue for the
satisfiability problem is presented plus the proposed
algorithm and its implementation details. In section 4, the
conclusions of this work are discussed. Finally, in last
section, the experiment study designed and results are
presented.

Currently there are two categories to classify the SAT
Solution techniques. Complete and Incomplete techniques,
each technique has his own advantages and disadvantages
in solving different SAT instances. A complete solution
technique is the one that provides the guarantee that it will
eventually either report a satisfying assignment or declare
that the given formula is unsatisfiable. Despite the worst-
case exponential run time of all known algorithms for these
category techniques, they have the advantage of always
providing proofs of unsatisfiability. An incomplete
solution technique is the one that typically run with a pre-
set resource limit, (e.g. Max Iteration Number), after which
they either produce a valid solution or report failure.
Despite the quickly efficient solutions that can be found,
the incomplete

————————————————

 Rasha Abdelkawy is currently pursuing PhD degree in Department of
computer Science, faculty of Engineering, Alexandria University, Egypt, E-
mail: rabdelkawy@informatica-me.com

 Dr. Walid Gomaa: Department of Computer Science and Engineering,
 Japan University of Science and Technology Alexandria – Egypt
“Currently on leave from the Faculty of Engineering, Alexandria Universi”

 Dr. soheir foad. Proof in Department of computer Science, faculty of
Engineering, Alexandria University, Egypt

mailto:rabdelkawy@informatica-me.com

International Journal of Scientific & Engineering Research, Volume 3, Issue 5, May-2012 2
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

2 HANDLE SAT PROBLEMS WITH EVOLUTIONARY

ALGORITHMS AND LOCAL SEARCH.

Evolutionary algorithms (EAs) are heuristic algorithms
that have been applied to SAT and many other NP-
complete problems. Some negative results question the
basic ability of EAs to solve SAT. De Jong and Spears [1]
proposed a classical genetic algorithm (GA) for SAT and
observed that the GA may not outperform highly tuned,
problem-specific algorithms. This result was confirmed
experimentally by Fleurent and Ferland[2], who
reported scarce performance of pure GAs when
compared to local search. Recent results showed that
EAs can nevertheless yield good results for SAT if
equipped with additional techniques to overcome the
weaknesses of classical GAs. A local search method is
incorporated into the evolutionary algorithm to
improve individuals [18]. While GAs operators help the
Search process to explore the SAT solution domain
without stuck with local optimum points.
There have been many attempts to solve SAT problem
using hybrid approaches that combining ideas from
Evolutionary Algorithms and local search techniques
[2,4,5,7,8,18]. They are all relying on pure random initial
populations. While the approaches SAWEA [18] and
RFEA [4] are based on adaptive fitness functions, other
EAs [7, 2] are based on a problem-specific variation
operators and a tabu search stage. While recent
technique are based on local optimization [5, 8], our
research focus on the EAs capability to handle the SAT
problem. We investigate the possibility of increase the
EAs search efficiency by encoding the problem and use
this encoding technique to tune the EAs operators
(parent selection, mutation, crossover, and replacement
scheme).

3 SOLVING SAT PROBLEMS WITH GENETIC

ALGORITHMS

The most obvious way to represent a solution
candidates for SAT are binary strings, each of which
has a sequence of 0 or 1, of length n, where every
variable is associated to one bit. The position of variable
in the chromosome depend on it’s appear in the SAT
Problem clauses. The suggested encoding would
transforms the original SAT problem by rearranging the
variables to satisfy the condition that the most related
ones are in closer positions inside the chromosome,
[20,21] was the first research to suggested that, and
reported that their proposed approach outperforms
blind GAs in all test accomplished. That encourages us
to believe that the GA encoding (representation) is a
primary aspect of enhancing the GAs performance in
SAT problem. Also, The schema theory [23,25] implicitly
lists Perquisites features that a representation should
exhibit in order to utilize a GA search, namely that with

an above average probability, short, low-order schemata
will combine and form a higher-order co-adapted
schemata. Both of previous researches intuitive use to
encode the SAT problem and use this encode to building
blocks that enhance the search Process.
GA like many natural systems, assume a certain holistic
structure, a structure where the whole different from the
sum of its parts. So knowing the value of the parts does
not necessarily enable the calculation of their effect
together. In GA epistasis is used to indicate the extent of
nonlinearity and interdependency among the element
composing the representation. Epistatsis, is a form of
interaction between nonallelic genes in which one
combination of such genes has a dominant effect over
other combinations [24].
In [20, 21] work an Epistasis Reducer Algorithm (ERA)
is presented. It is used to preprocess SAT instances for
reducing the epistasis of its representation and in this
way to improve the performance of a simple genetic
algorithm (using classical crossover) when used to solve
SAT formulae. First, the SAT problem represented by a
weighted hypergraphs, where each clause was
represented by a hyperedge and each variable is
represented by a node, and the weights between two
nodes represent how many times the corresponding
variables is related (the number of clauses both
variables appear in) . Second, the bandwidth
minimization problem for graphs (BMPG) is used to
find a labeling for the vertices of a graph, where the
maximum absolute difference between labels of each
pair of connected vertices is minimum. After variables
remap according to the ERA, a simple genetic algorithm
which uses classical genetic operators applied on the
recoded SAT problem.

Our approach is based on the intuitive that a strong
epistatic relation may exist in shape of genes groups
within a genotype, rather than between genes and each
other. That would condense brief view of such
interactions rather than a detailed epistatic relation like
the previous research. We suggest using a cluster
algorithm to connect related genes into groups. Where
high intra-cluster similarities express a strong epistatic
relation between each cluster members and low inter-
clusters similarity express weak relations between the
genes in different clusters. In computation complexity
wise, the bandwidth minimization problem is an NP-
complete problem which will increase the overall SAT
problem complexity, while the suggested cluster
method, to encode the SAT problem, has O (n2)
complexity [26]. Further, we intend to use each instance
cluster-result as a guide to tune the GA Operators.

Next the main implementation details of the cluster
Algorithm and the GA are described.

3.1 The Clustering Algorithms

http://dictionary.reference.com/browse/which

International Journal of Scientific & Engineering Research, Volume 3, Issue 5, May-2012 3
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

A satisfiability problem is expressed as a Boolean
formula over a set of variable. Suppose that we have
satisfiability problem that is expressed as a Boolean
formula with m clauses, over a set of n variable. The
objective is assigning the SAT-set variables into groups
so that the variables in the same cluster are more similar
to each other than to those in other clusters. We are
interested in developing enhanced k-mediods cluster
technique [26, 27] that should work fast and efficient for
large sparse data sets. Assume the appropriate cluster
number is K; the proposed algorithm is composed of the
following steps:

 Step 1: Build Similarity Matrix

The similarity matrix should reflect the relation between
every pair of all instance variables, for simplicity, we
choose to represent the similarity between two-variable
as the number of clauses both variables appears in. this
calculation does not recognize the different of related
variables or related variables’ negation.

Step 2: Select initial medoids

After calculating the similarity matrix we will order the
variables descending according to the most related to
other variables, we would not take the sum of similarity
between that variable and the others as a reference,
rather we would use the count of variables related to
that variable with a similarity value larger than zero.
That means that first k-element would contain the most
centered ―popular‖ K-variables to others, and those
would be considered the k-mediods for our algorithm.

Step 3: Build Clusters-relation Matrix

For each variable have similarity value larger than zero
with one of the clusters mediods, the cluster-relation
between that variable and any cluster is calculated as
the similarity value between that variable and that
cluster mediods. By normalize variable clusters-relation
vector, so that the sum of the relations between the
variable and all clusters equal one, we express the
degree of the adherence of the variable and each cluster.
Other variables that do not have direct relation with the
cluster-mediods, the clusters-relation value would be
represented as the sum of the similarity value between
that variable and every element in the cluster
(multiplied by normalized variable clusters-relation
vector).

Step 4: Build Clusters members

To generate the final clusters, assign each variable to the
closest cluster, the cluster that has the largest clusters-
relation with that variable.

That was a greedy enhancement for the k-mediods
technique; it may not be the best cluster technique to
use, but it works fast and more efficient in sparse large
SAT instances than the normal iterative k-mediods
technique. The most sensitive setting parameter is the
cluster number, which depend on each dataset
characteristics.

3.2 Label the variables

The As a preliminary step toward implement the GAs
algorithms on the SAT instance we need to rearrange
the instance variables according to the cluster result to
satisfy the condition that most related ones are in a
closer position inside the chromosome.
First we would order the variables belong to the same
cluster with the following rule, For each cluster, the
mediod variable is labeled as the center position of that
cluster and other variables would be rearranged
according to the distance from variable to the medoid.
So that variables with higher similarity value with the
mediods would be labeled to a closer position to the
center of the cluster.
Finally, the intra-cluster distance between generated
clusters should be used to rearrange the clusters’
members into the chromosome. As center cluster, the
cluster has the lowest intra-cluster distance with other
clusters, its member would labeled with the center
positions in the chromosome, and other clusters would
be rearranged according to the intra-cluster distance
between that cluster and center cluster.
 By the above step we guarantee that the most related
cluster to other generated-clusters is in a middle
position in the chromosome, so that its variables
members would be in the middle positions for other
SAT instance variables. The same technique was used to
re-arrange variable inside the same cluster, most related
―popular‖ variable, cluster mediod, is in a middle
positions for other variables.

3.3 Apply GA for solving SAT problems

In brief, the evolution theory portrays the potential
solutions (after encode the internal problem variables)
to satisfy the SAT formula as individuals, each solution
is evaluated, by external function, to check how close
that solution to the optimal solution. Best fitted
individuals are then selected, Parent selection step, to
generate new population through making crossover
between individuals and applying mutation to the
offspring to avoid premature convergence. In order to
demonstrate the benefits to preprocess SAT instances
using cluster technique, the knowledge gain used to
tune genetic operators as the following:

Chromosome Definition: The solution candidate for
SAT is represented as a bit string of length n, where

International Journal of Scientific & Engineering Research, Volume 3, Issue 5, May-2012 4
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

every variable is associated to one bit, according to the
position defined by the cluster technique.

Fitness Function: the simplest fitness function used is
the count of the clauses that are satisfied by the
candidate solution. Another fitness function used is
―Cluster fitness‖ where each cluster has a score of
Number of satisfied clauses by its members current
assignment divided on the cluster size.

Crossover operator: would happen between different
clusters not between Individual, by successively replace
certain cluster members in one parent with the
counterpart cluster members of another Parent. Single
point crossover was implemented using point position
proportional to the cluster size. For example: if the
single point was 0.25 and the cluster size was 20 gene
then the single point of crossover would be gene
position number 5 inside the cluster while if the cluster
size was 100 gene, the crossover single point would be
in gene position number 25 .

Mutation Operator: As the mutation rate is used to
maintain the diversity of the entire population [30], we
suggest use tow static mutation probabilities as the
following:

1. Cluster Mutation Probability
The mutation rate is set independently for every cluster,
proportionally to the Cluster Size. We experimentally
notice that the clusters in the chromosome center, which
indicate higher influence of their members values over
the whole chromosome, have larger size than the
clusters in the chromosome borders. So we use the
following equation to calculate the mutation rate for
each cluster:

Cluster Mutation Rate = 1 / (N – Cluster Size)

 Where the N is the chromosome Length, No of
variables, and Cluster Size is the number of genes
belong to this cluster.

2. Gene Mutation Probability

 A standard normal distribution variable would be used
to choose the mutation bit position inside each cluster,
that distribution would make the rate of mutation for
the genes in the cluster center high (most related
variable to others in cluster), and the genes positioned
on the cluster border (less related variable) have a
lower mutation rate.

Parent Selection: Parent selection process depend of
choosing the best fitted solutions to generate the next
generation. The tournament parent selection technique
is used [11]. For each GA generation Parents, the
individuals ―solutions‖ would be divided into 2 groups,
―highly fitted‖ group, that has the best fitted solutions
of the current generation and ―Less fitted‖ group that

has the least the best fitted solutions of the current
generation. In crossover Operator, one Parent would be
chosen randomly from the ―highly fitted‖ Individuals
while the other would be chosen randomly from the
―Less fitted‖ Individuals. Experimentally, that action
slows the unmatured convergence of GA and decrees
the possibility of getting similar solutions with each
generation.

Replacement scheme: A small group of best ever
solutions through all the Parents generations, namely
elitism group, we be kept and updated through each
new Parents generation. As well as, a small group of
best ―cluster fitness‖ solutions, namely minority group,
their size depends on the dataset size. After the parent
selection stage finished, the least fitted solutions of
―highly fitted‖ parents group would be replaced by the
elitism group. And the least fitted solutions of ―Less
fitted‖ parents group would be replaced by the minority
group solutions. A check step is needed before the
current parents are replaced with the elitism or minority
groups’ members. If current parent solutions have a
similar solutions to these groups’ members, then the
similar solutions would be replaced not the least fitted
solutions. This action was taken to keep best ever found
solution for the SAT problem ―elitism group‖ as it may
be lost during crossover and mutation operators, plus
keeping the individuals with best scored parts. As best
fitted score of the solutions’ parts does not necessarily
enable the best whole fitted score solutions.

4 EXPERIMENTAL STUDY

4.1 Design of Experiments

All the Experiments were performed on several instances
from the DIMACS Benchmark set [29]. The instances used
are hard instances with the number of clauses (m) and
variables (n) ratio (m/n) equals 4.26 its descriptions is given
in Table 1. In order to obtain statistically significant results,
several runs are required for each benchmark instance under
consideration, for computation simplicity, 10 independent
runs were executed for each instance with each technique,
and the average value is used.

The experiments ran into an Intel(R) Core(TM) 2 Due CPU
3.00 with 2.00 GB of RAM, and implemented with C#
programming language.

The techniques quality measure should express the
efficiency of using each GA algorithm with the SAT
instances, where both, the maximum number of clauses
satisfied found by each technique, and the computational
cost required, are taken into consideration.

For the first measure MCNR (Maximum clause number
rate), which represents the portion of solution found at each
run. It measures the percentage of the maximum number of
satisfied clauses found to the total number of clauses in each

International Journal of Scientific & Engineering Research, Volume 3, Issue 5, May-2012 5
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

instance. While the second measure TR (Time required)
quantifies the computational cost of each technique by
measure the average time required to run the technique.

A classic GA was implemented where its internal
representation is based on binary strings of length N in
which the ith bit represents the truth value of the ith Boolean
variable of the problem. A Classic genetic operators defined
by Holland [25], are internally implemented, the
recombination is done in the standard way using single
point Crossover operator with middle gene position
parameter, a static mutation probability (equals 1/n) was
used. While the Parent selection operation was the
tournament Algorithm.

While the exact method to solve the BMPG problem take O
(n K) where k is the bandwidth searched for that graph. An
Approximate algorithm that does not guarantee to find the
optimal bandwidth of the graph but, get best bandwidth
minimization with the given limitation is used [20]. The
ERA algorithm is sensitive to its parameters, e.g. the
temperature, the maximum number of accepted moves at
each temperature, and the cooling rate. The parameters of
the ERA algorithm, implemented in the following section,
were chosen experimentally taking into account its authors
experiments reported results in [21], and some related work
reported in [31, 32].

TABLE 1. TEST INSTANCES

Seq Instance name n m
Satisf
iable?

1
unif-k3-r4.26-v360-
c1533-S1217224084-
10.SAT.shuffled.cnf

360 1533 Yes

2
unif-k3-r4.26-v360-
c1533-S1373941726-
12.UNSAT.shuffled.cnf

360 1533 No

3
unif-k3-r4.26-v500-
c2130-S539876024-
03.SAT.shuffled.cnf

500 2130 Yes

4
unif-k3-r4.26-v500-
c2130-S1161940794-
17.UNSAT.shuffled.cnf

500 2130 No

5
unif-k3-r4.261-v650-
c2769-S1089058690-
02.SAT.shuffled.cnf

650 2769 Yes

6
unif-k3-r4.261-v650-
c2769-S440198403-
10.UNSAT.shuffled.cnf

650 2769 No

7
unif-k3-r4.26-v800-
c3408-S141590207-
13.SAT.shuffled.cnf

800 3408 Yes

8
unif-k3-r4.26-v800-
c3408-S1013535775-
14.UNSAT.shuffled.cnf

800 3408 No

9
unif-k3-r4.26-v1000-
c4260-S1141835011-
09.SAT.shuffled.cnf

1000 4260 Yes

10
unif-k3-r4.26-v1000-
c4260-S2083146463-
03.UNSAT.shuffled.cnf

1000 4260 No

4.2 Epistatsis Reducer Effect Experimental
Results and Analysis

In this section, experiment measures the efficiency of
reducing GA encoding epistatsis using the proposed
algorithm compared to bandwidth minimization
problem for graph (BMPG) algorithm.
As the objective of the encoding algorithm is to re-label
the most related variables of the problem and place
them in closer positions inside the chromosome. Then
we expect that the absolute difference between labels of
different variable related into one clause in the SAT
instances will be reduced. A new measure βA will be
defined and used to quantify the SAT variables
epistatsis generated due to their different positions with
each technique.
The classic GA algorithm will measure the original SAT
instance variable labeling difference, while both the
ERA and cluster techniques will be ran on original SAT
instance first, then βA will be measured using the new
re-labeled SAT instance.
For each clause in the SAT Problem, the difference
between the 3 variables label will be calculated. By
subtract the absolute value of each variable label in the
clause and the absolute value of neighbors’ variables.
Then sum is carried out for all the absolute clauses’
values of the SAT instance, and divided by (3 * clauses
number) to get the average βA. For Example, in the
following clause (x1, -x8, x13), the difference between
the 3 variables label will be equals |1-8| + |1-13| + |8-
13|=24, and as we have the summation of 3 different
variable labels’ epistatsis, the average βA will be
calculated as 24/3= 6 for this clause. By measure the
average for all SAT instance clauses, with different
encoding algorithms, we may get good indicator of the
efficient performance of GA based on its variables
epistatsis values.
Table 2 presents the comparison between the proposed
algorithm in this research, namely CLU, and the ERA
Algorithm. Data included are: Seq. of the formula;
average variables epistatsis βA obtained with the
original SAT problem and different encoding
algorithms; the CPU time in seconds used by the
encoding algorithms is Tβ .

TABLE 2 AVERAGE VARIABLES EPISTATSIS AND CPU TIME IN

SECONDS MEASUREMENTS FOR ERA && CLU

Seq.
Initial SAT

βA

ERA

βA

ERA

Tβ

CLU

βA
CLU Tβ.

International Journal of Scientific & Engineering Research, Volume 3, Issue 5, May-2012 6
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

1 100 60 220 64 80

2 102 63 260 69 80

3 134 90 320 98 96

4 138 95 380 103 96

5 184 142 520 148 110

6 188 148 540 152 110

7 226 192 760 196 130

8 220 196 790 203 130

9 292 248 920 252 150

10 295 254 920 260 150

The results of experimentation presented showed that
the ERA Algorithm outperforms the CLU algorithm in
reducing the average encoding epistatsis, but with
insignificant amount; while in computing time, CLU
algorithm outperforms the ERA with tremendous
amount especially when increasing the problem size,
number of SAT variables.

 Fig 1: Average variables epiststsis versus computation time

Figure 1 showed results, the X- axis represents the
Average variables epistatsis βA while the Y-axis
represents the computing time in seconds required by
the two algorithms.
Additionally, we notice that the unsatisfiable problems
have higher average encoding epistatsis with the
original problem, as well as, for both algorithms used to
re-encode the problem.
We notice also that CLU algorithm running time does
not affected; if the original problem is satisfiable, or not,
while ERA affected negatively if the problem is
unsatisfiable

4.3 Epistatsis Reducer Effect Experimental
Results and Analysis

In this section, experiment measures the search
efficiency of the proposed CLU+GA technique in
solving SAT problem. The proposed algorithm will be

tested compared to ERA+GA algorithm, as well as, the
classic genetic algorithm.
Data included are: Seq. of the formula; the number of
max satisfied clauses rate, for each approach, and the
CPU time in seconds, for each approach. It is important
to remark that the times presented in the next table for
the combined approach in the column TR measure takes
into account the CPU time used for the preprocessing
step in case ERA+GA, or CLU+GA.

TABLE 3 AVERAGE MAX CLAUSES SATISFIED AND CPU TIME IN

SECONDS MEASUREMENTS FOR ERA && CLU && GA

Seq.
GA

βA

GA

TS

ERA

βA

ERA

TS

CLU

βA

CLU

TS.

1 0.556 230 0.576 320 0.769 240

2 0.558 460 0.570 660 0.766 510

3 0.421 280 0.526 488 0.754 260

4 0.418 780 0.522 980 0.742 820

5 0.394 540 0.512 690 0.718 500

6 0.411 1220 0.509 1780 0.715 1280

7 0.381 840 0.506 960 0.646 620

8 0.397 2000 0.501 2440 0.645 2120

9 0.366 1020 0.502 1250 0.62 850

10 0.388 2560 0.503 3000 0.617 2630

As the unsatisfied SAT problems make the three algorithms
reach their run-time end-condition limitation without find a
suitable answer, the batch of unsatisfied instances reported
separately than the satisfied instances.

Fig. 2 Satisfied instance MCSR measure

International Journal of Scientific & Engineering Research, Volume 3, Issue 5, May-2012 7
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

Figure 3 Unsatisfied instance MCSR measure

Figure 2, 3 represent the Max clause rate Satisfied by each
technique. The X-axis represents the instance seq. used from
table 1, while the Y-axis represents the portion of clauses
satisfied by each algorithm, compare to the total clauses
number. It is noticed that the natural of the problem does
not affect the three algorithms performance, as similar size
SAT problem, satisfied or not, almost have similar MCSR
measurements. Satisfied Problems usually have higher
MCSR. While The problem size, affect the three algorithms
in negative way as the three algorithms have a descending
performance, increase in computation time, with increasing
the number of variables, while CLU has less affected with
the problem size, the classic genetic algorithms has a serious
impacted by the problem size which increase our intuitive
that merge the CLU+GA with Local search will increase the
efficiency of using GA as a heuristic algorithm to solve SAT
problem.

Figure 4, 5 represent the computation time by each
technique. The X-axis represents the instance seq. used from
table 1, while the Y-axis represents the CPU time consumed
by each algorithm. The natural of the problem, satisfied or
not, affect differently the computation time consumed by
each algorithm. While CLU+GA run faster than the classic
GA in the satisfied instances, it take more time in case of the
unsatisfied, we believe that the CLU+GA can solve the SAT
problem faster than the GA, while in the unsatisfied
instances it bear the computation time of the pre-processing
step, cluster algorithm, plus running the GA with the tuned
operators. The Preprocess ERA algorithm consume a lot of
computation time especially when increase the SAT problem
size, that make the ERA+GA the highest time consuming
algorithm.

Figure 4 Satisfied instance CPU time measure

Figure 5 Unsatisfied instance CPU time measure

To conclude, the results of experimentation presented
showed that the combined approach CLU+GA outperforms
the ERA+GA algorithm, as well as, simple GA in all the tests
accomplished, not only in solution quality but also in
computing time.

5 CONCLUSIONS

This Paper is a part of an extended research, where the
paper presents a first part of an incomplete SAT solver, that
explore a hybrid approach which combining ideas from
Evolution Algorithms and local search techniques.
In this paper, we investigate the possibility of increase the
EAs search efficiency by encoding the problem and use this
encoding technique to tune the EAs operators (parent
selection, mutation, crossover, and replacement scheme).
This approach has been compared versus a simple GA
without preprocessing and versus ERA+GA techniques
using a set of SAT instances. Also it was encourage to
complete the research of hybrid the new GA techniques with
other techniques, e.g. local search, to improve the
Incomplete SAT Solver efficiency.

6 REFERENCES

[1] K.A. DeJong, W.M. Spears, Using genetic algorithm to solve NP-complete

problems, in: Proceedings of the 3rd International Conference on Genetic

Algorithms, Virginia, USA, 1989, pp. 124–132.

[2] F. Lardeux, F. Saubion, J.K. Hao, GASAT: A genetic local search algorithm for

International Journal of Scientific & Engineering Research, Volume 3, Issue 5, May-2012 8
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

the satisfiability problem, Evolutionary Computation 14 (2) (2006) 223–253.

[3] J. Gottlieb, E. Marchiori, C. Rossi, Evolutionary algorithms for the satisfiability

problem, Evolutionary Computation 10 (1) (2002) 35–50.

[4] Levent Aksoy, E.O.Gunes, An Evolutionary Local Search Algorithm for the

Satisfiability Problem, TAINN 2005, LNAI 3949, pp. 185 – 193, 2006.©

Springer-Verlag Berlin Heidelberg 2006

[5] Oscar Pérez Cruz, Alfredo Cruz , Evolutionary SAT Solver, Ninth LACCEI

Latin American and Caribbean Conference (LACCEI’2011), Engineering for a

Smart Planet, Innovation Information Technology and Computational Tools

for Sustainable Development, August 3-5, 2011, Medellín, Colombia.

[6] Alex.S.Fukunaga. Evolutionary Computation Journal, MIT Press Cambridge,

MA, USA, Volume 16 Issue 1, Spring 2008

[7] Yousef Kilani: Improving GASAT by replacing tabu search by DLM and

enhancing the best members. Artif. Intell. Rev. 33(1-2): 41-59 (2010)

[8] Yusef Kilani, Comparing the performance of the genetic and local search

algorithms for solving the satisfiability problems, Soft Computing Volume 10,

Issue 1, January 2010, Pages 198-207

[9] A. E. Eiben , Evolutionary Algorithms and Constraint Satisfaction: Definitions,

Survey, Methodology, and Research Directions, Theoretical Aspects of

Evolutionary Computing, 2001

[10] Omas Bäck, Agoston E. Eiben, Marco E. Vink , A superior Evolutionary

Algorithm for 3 SAT, Proceedings of the 7th Annual Conference on

Evolutionary Programming, number 1477 in +LNCS, 1998

[11] T. Blickle and L. Thiele. ―A mathematical analysis of tournament selection‖. In

Proceedings of the Sixth ICGA, pages 9—16. Morgan Kaufmann Publishers,

San Francisco, Ca., 1995.

[12] Carla P. Gomes, Henry Kautz, Ashish Sabharwal, Bart Selman , Handbook of

Knowledge Representation © 2008 Elsevier B.V., Chapter 2:Satisfiability

Solvers, Pages 89-134.

[13] Henry Kautz, Ashish Sabharwal, and Bart Selman, Incomplete Algorithms,

Handbook of Satisfiability, IOS Press, 2008, chapter 6

[14] J. Marques-Silva, Practical applications of Boolean Satisfiability, 9th

International Workshop on In Discrete Event Systems, 2008. pp. 74-80.

[15] John Franco and John Martin, A History of Satisfiability, Handbook of

Satisfiability, IOS Press, 2009, Chapter 1.

[16] John Franco and John Martin, Handbook of Satisfiability, IOS Press, 2009

[17] M S Hasan , B P Amavasai1 and J R Travis1, A Distributed Genetic Algorithm

Solution to the Boolean Satisfiability Problem, International Symposium on

Innovations in Intelligent Systems and Applications, INISTA 2005

[18] Eiben, A.E.; van der Hauw, J.K. Solving 3-SAT by GAs adapting constraint

weights Evolutionary Computation. IEEE International Conference on 1997

[19] Rodriguez-Tello, E., Torres-Jimenez, J., SAT solving using an epistasis reducer

algorithm plus a GA. Computational Intelligence and Multimedia

Applications Fifth International Conference, 2003.

[20] Eduardo Rodriguez-tello , Jose Torres-jimenez. ERA: An algorithm for

reducing the epistasis of sat problems. In Genetic and Evolutionary

Computation - GECCO 2003

[21] Eduardo Rodriguez-tello , Jose Torres-jimenez. Improving the Performance of

a Genetic Algorithm Using a Variable-Reordering Algorithm. Genetic and

Evolutionary Computation – GECCO 2004. Volume 3103/2004, 102-113, DOI:

10.1007/978-3-540-24855-2_10.

[22] Cyril fonlupt, Denis Robilliard, Philippe Preux. A Bit-Wise Epistasis Measure

for Binary Search Spaces. PPSN V Proceedings of the 5th International

Conference on Parallel Problem Solving from Nature. Springer-Verlag

London, UK ,1998.

[23]

[24] Davidor Y, Epistasis Variance: A Viewpoint of GA-Hardness. In foundations

of Genetic Algorithms. Morgan Kaufmann, page 23-35, 1991

[25] Davidor Y, Epistasis Variance: Suitability of a Representation to Genetic

Algorithms. Complex system publication Inc, edition 4 , 1990

[26] J.H. Hollend , Adaptation in Natural and Artificial systems, University of

Michigen Press , Ann Arbor , 1975

[27] L Kaufman, P J Rousseeuw .,Finding Groups in Data: An Introduction to

Cluster Analysis . New York, John Wiley & Sons.1990.

[28] Hae-Sang Park, Jong-Seok Lee and Chi-Hyuck Jun. A simple and fast

algorithm for K-medoids clustering. Expert Systems with Applications: An

International Journal archive, Volume 36 Issue 2, March, 2009

[29] http://www.satlib.org/benchm.html

[30] ftp://dimacs.rutgers.edu/pub/challenge/satisfiability/contributed/UCSC/i

nstances

[31] Korejo, I., Yang, S. and Li, C., A comparative study of adaptive mutation

operators for metaheuristics, 8th Metaheuristic International Conference (MIC

2009).

[32] J. Torres-Jimenez and E. Rodriguez-Tello, ―A New Measure for the Bandwidth

Minimization Problem‖, Proceedings of the IBERAMIA-SBIA 2000, Number

1952 in LNAI (Antibaia SP, Brazil), Springer-Verlag, November 2000, pp.

477—486.

[33] W. M. Spears, ―Simulated Annealing for Hard Satisfiability Problems‖, Tech.

Report AIC-93- 015, AI Center, Naval Research Laboratory, Washington, DC 20375,

1993.

http://www.sciencedirect.com/science/journal/15684946
http://www.sciencedirect.com/science?_ob=PublicationURL&_hubEid=1-s2.0-S1568494609X00049&_cid=272229&_pubType=JL&view=c&_auth=y&_acct=C000228598&_version=1&_urlVersion=0&_userid=10&md5=c9d78a079355bfbbf6d424f4fdefc127
http://www.sciencedirect.com/science?_ob=PublicationURL&_hubEid=1-s2.0-S1568494609X00049&_cid=272229&_pubType=JL&view=c&_auth=y&_acct=C000228598&_version=1&_urlVersion=0&_userid=10&md5=c9d78a079355bfbbf6d424f4fdefc127
http://www.sciencedirect.com/science?_ob=PublicationURL&_hubEid=1-s2.0-S1568494609X00049&_cid=272229&_pubType=JL&view=c&_auth=y&_acct=C000228598&_version=1&_urlVersion=0&_userid=10&md5=c9d78a079355bfbbf6d424f4fdefc127
http://dl.acm.org/author_page.cfm?id=81100203827&coll=DL&dl=ACM&trk=0&cfid=78364451&cftoken=46924549
http://dl.acm.org/author_page.cfm?id=81100596997&coll=DL&dl=ACM&trk=0&cfid=78364451&cftoken=46924549
http://dl.acm.org/citation.cfm?id=J280&picked=prox&cfid=78364451&cftoken=46924549
http://www.satlib.org/benchm.html
ftp://dimacs.rutgers.edu/pub/challenge/satisfiability/contributed/UCSC/instances
ftp://dimacs.rutgers.edu/pub/challenge/satisfiability/contributed/UCSC/instances

