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Abstract— Since the 1990s, the use of incomplete algorithm for solving the SAT problem has grown quickly. Even though the incomplete 

algorithm is unable to prove unsatisfiability, but it may find solutions for a satisfying problem quickly. In this paper, the improvement of GA 

Performance in solving the 3-SAT Problem was our main objective and it is shown that the GA can be more efficient if SAT problem-knowledge 

is oriented in the GA encoding phase, and the GA operators is tuned according to the encoding phase gained knowledge. In this aspect, a novel 

evolutionary local search algorithm is developed. In this paper the first Part of our research will be presented, that Part of improve the EAs 

search Performance with the SAT Problem, that was integrated later in evolutionary local search algorithm.  The EAs Enhancement was 

assessed using a set of well-known benchmarks that includes instances with different sizes, and compared with blind EAs algorithm. 

Index Terms— Genetic Algorithms, Preprocessing algorithm, Genetics encoding, SAT Problem, Incomplete Solver.   

——————————      —————————— 

1 INTRODUCTION     

Given a conjunctive normal form (CNF) propositional 
formula where the formula is defined as a conjunction 
(AND, ∧ ) of clauses, where each clause is a disjunction 
(OR, ∨ ) of literals, and each literal is either a variable or its 
negation (NOT, ￢). The Boolean Satisfiability Problem 
(SAT) is defined as the following: Given a CNF formula F, 
does F have a satisfying assignment? Interest in 
Satisfiability is expanding for a variety of reasons, not in 
the least because nowadays more problems are being 
solved faster by SAT solvers than other means [14].This is 
probably because Satisfiability stands at the crossroads of 
logic, graph theory, computer science, computer 
engineering, and operations research. Thus, many 
problems originating in one of these fields typically have 
multiple translations to Satisfiability and there exist many 
mathematical tools available to the SAT solver to assist in 
solving them with improved performance [15]. Techniques 
have two-sided error, they cannot determine that a formula 
is unsatisfiable, and may not find a solution when the 
formula is satisfiable. 
One of the key motivations for studying incomplete 
techniques was the finding that complete algorithms 
perform quite poorly on certain randomly generated 
formulas. Also, most of the incomplete methods can work 
as a solution approach for the problem of maximum 
satisfiability, or MAX-SAT problem by providing the ―best 
found‖ truth assignment upon termination. 
Incomplete methods are based on heuristic algorithms, 

such as algorithms based on translation to Integer 
Programming, Finite Learning Automata, local search, 
simulated annealing, tabu search, and evolutionary 
algorithms [1,3,17]. A more comprehensive description of 
Boolean Satisfiability and basic algorithms to solve is 
provided at [13]. There have also been attempts at hybrid 
approaches that explore combining ideas from two or more 
heuristic algorithms, such as Evolution Algorithms and 
local search techniques [4, 5, 6, 7, and 8]. 
 
The rest of this paper is organized as follows: Section 2, 
presents a historical resume of handling SAT problem with 
Evolutionary Algorithms and Local search.  In section 3, a 
detailed description of the GA representation issue for the 
satisfiability problem is presented plus the proposed 
algorithm and its implementation details. In section 4, the 
conclusions of this work are discussed. Finally, in last 
section, the experiment study designed and results are 
presented. 
 
Currently there are two categories to classify the SAT 
Solution techniques. Complete and Incomplete techniques, 
each technique has his own advantages and disadvantages 
in solving different SAT instances. A complete solution 
technique is the one that provides the guarantee that it will 
eventually either report a satisfying assignment or declare 
that the given formula is unsatisfiable. Despite the worst-
case exponential run time of all known algorithms for these 
category techniques, they have the advantage of always 
providing proofs of unsatisfiability. An incomplete 
solution technique is the one that typically run with a pre-
set resource limit, (e.g. Max Iteration Number), after which 
they either produce a valid solution or report failure. 
Despite the quickly efficient solutions that can be found, 
the incomplete 
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2 HANDLE SAT PROBLEMS WITH EVOLUTIONARY 

ALGORITHMS AND LOCAL SEARCH. 

 

Evolutionary algorithms (EAs) are heuristic algorithms 
that have been applied to SAT and many other NP-
complete problems. Some negative results question the 
basic ability of EAs to solve SAT. De Jong and Spears [1] 
proposed a classical genetic algorithm (GA) for SAT and 
observed that the GA may not outperform highly tuned, 
problem-specific algorithms. This result was confirmed 
experimentally by Fleurent and Ferland[2], who 
reported scarce performance of pure GAs when 
compared to local search. Recent results showed that 
EAs can nevertheless yield good results for SAT if 
equipped with additional techniques to overcome the 
weaknesses of classical GAs. A local search method is 
incorporated into the evolutionary algorithm to 
improve individuals [18]. While GAs operators help the 
Search process to explore the SAT solution domain 
without stuck with local optimum points.  
There have been many attempts to solve SAT problem 
using hybrid approaches that combining ideas from 
Evolutionary Algorithms and local search techniques 
[2,4,5,7,8,18]. They are all relying on pure random initial 
populations. While the approaches SAWEA [18] and 
RFEA [4] are based on adaptive fitness functions, other 
EAs [7, 2] are based on a problem-specific variation 
operators and a tabu search stage. While recent 
technique are based on local optimization [5, 8], our 
research focus on the EAs capability to handle the SAT 
problem. We investigate the possibility of increase the 
EAs search efficiency by encoding the problem and use 
this encoding technique to tune the EAs operators 
(parent selection, mutation, crossover, and replacement 
scheme).  

 

3  SOLVING SAT PROBLEMS WITH GENETIC 

ALGORITHMS 

 

The most obvious way to represent a solution 
candidates for SAT are binary strings,  each of which 
has a sequence of 0 or 1, of length n, where every 
variable is associated to one bit. The position of variable 
in the chromosome depend on it’s appear in the SAT 
Problem clauses. The suggested encoding would 
transforms the original SAT problem by rearranging the 
variables to satisfy the condition that the most related 
ones are in closer positions inside the chromosome, 
[20,21] was the first research to suggested  that, and 
reported that their proposed approach outperforms 
blind GAs in all test accomplished.  That encourages us 
to believe that the GA encoding (representation) is a 
primary aspect of enhancing the GAs performance in 
SAT problem. Also, The schema theory [23,25] implicitly 
lists Perquisites features that a representation should 
exhibit in order to utilize a GA search, namely that with 

an above average probability, short, low-order schemata 
will combine and form a higher-order co-adapted 
schemata. Both of previous researches intuitive use to 
encode the SAT problem and use this encode to building 
blocks that enhance the search Process. 
GA like many natural systems, assume a certain holistic 
structure, a structure where the whole different from the 
sum of its parts. So knowing the value of the parts does 
not necessarily enable the calculation of their effect 
together. In GA epistasis is used to indicate the extent of 
nonlinearity and interdependency among the element 
composing the representation. Epistatsis, is a form of 
interaction between nonallelic genes in which one 
combination of such genes has a dominant effect over 
other combinations [24]. 
In [20, 21] work an Epistasis Reducer Algorithm (ERA) 
is presented. It is used to preprocess SAT instances for 
reducing the epistasis of its representation and in this 
way to improve the performance of a simple genetic 
algorithm (using classical crossover) when used to solve 
SAT formulae.  First, the SAT problem represented by a 
weighted hypergraphs, where each clause was 
represented by a hyperedge and each variable is 
represented by a node, and the weights between two 
nodes represent how many times the corresponding 
variables  is related (the number of clauses both 
variables appear in) . Second, the bandwidth 
minimization problem for graphs (BMPG) is used to 
find a labeling for the vertices of a graph, where the 
maximum absolute difference between labels of each 
pair of connected vertices is minimum.  After variables 
remap according to the ERA, a simple genetic algorithm 
which uses classical genetic operators applied on the 
recoded SAT problem.   
 
Our approach is based on the intuitive that a strong 
epistatic relation may exist in shape of genes groups 
within a genotype, rather than between genes and each 
other. That would condense brief view of such 
interactions rather than a detailed epistatic relation like 
the previous research. We suggest using a cluster 
algorithm to connect related genes into groups. Where 
high intra-cluster similarities express a strong epistatic 
relation between each cluster members and low inter-
clusters similarity express weak relations between the 
genes in different clusters.  In computation complexity 
wise, the bandwidth minimization problem is an NP-
complete problem which will increase the overall SAT 
problem complexity, while the suggested cluster 
method, to encode the SAT problem, has O (n2) 
complexity [26]. Further, we intend to use each instance 
cluster-result as a guide to tune the GA Operators.  
 
Next the main implementation details of the cluster 
Algorithm and the GA are described. 
 
3.1 The Clustering Algorithms 

 

http://dictionary.reference.com/browse/which
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A satisfiability problem is expressed as a Boolean 
formula over a set of variable. Suppose that we have 
satisfiability problem that is expressed as a Boolean 
formula with m clauses, over a set of n variable. The 
objective is assigning the SAT-set variables into groups 
so that the variables in the same cluster are more similar 
to each other than to those in other clusters. We are 
interested in developing enhanced k-mediods cluster 
technique [26, 27] that should work fast and efficient for 
large sparse data sets. Assume the appropriate cluster 
number is K; the proposed algorithm is composed of the 
following steps: 

 

 Step 1: Build Similarity Matrix  

 

The similarity matrix should reflect the relation between 
every pair of all instance variables, for simplicity, we 
choose to represent the similarity between two-variable 
as the number of clauses both variables appears in. this 
calculation does not recognize the different of related 
variables or related variables’ negation.  
 

Step 2: Select initial medoids 

 

After calculating the similarity matrix we will order the 
variables descending according to the most related to 
other variables, we would not take the sum of similarity 
between that variable and the others as a reference, 
rather we would use the count of variables related to 
that variable with a similarity value larger than zero. 
That means that first k-element would contain the most 
centered ―popular‖ K-variables to others, and those 
would be considered the k-mediods for our algorithm. 

 

Step 3: Build Clusters-relation Matrix 

 

For each variable have similarity value larger than zero 
with one of the clusters mediods, the cluster-relation 
between that variable and any cluster is calculated as 
the similarity value between that variable and that 
cluster mediods.  By normalize variable clusters-relation 
vector, so that the sum of the relations between the 
variable and all clusters equal one, we express the 
degree of the adherence of the variable and each cluster.  
Other variables that do not have direct relation with the 
cluster-mediods, the clusters-relation value would be 
represented as the sum of the similarity value between 
that variable and every element in the cluster 
(multiplied by normalized variable clusters-relation 
vector).  

 

Step 4: Build Clusters members 

 
To generate the final clusters, assign each variable to the 
closest cluster, the cluster that has the largest clusters-
relation with that variable.    
 

That was a greedy enhancement for the k-mediods 
technique; it may not be the best cluster technique to 
use, but it works fast and more efficient in sparse large 
SAT instances than the normal iterative k-mediods 
technique.  The most sensitive setting parameter is the 
cluster number, which depend on each dataset 
characteristics.  

 

3.2 Label the variables  

 

The As a preliminary step toward implement the GAs 
algorithms on the SAT instance we need to rearrange 
the instance variables according to the cluster result to 
satisfy the condition that most related ones are in a 
closer position inside the chromosome.  
First we would order the variables belong to the same 
cluster with the following rule, For each cluster, the 
mediod variable is labeled as the center position of that 
cluster and other variables would be rearranged 
according to the distance from variable to the medoid. 
So that variables with higher similarity value with the 
mediods would be labeled to a closer position to the 
center of the cluster.  
Finally, the intra-cluster distance between generated 
clusters should be used to rearrange the clusters’ 
members into the chromosome. As center cluster, the 
cluster has the lowest intra-cluster distance with other 
clusters, its member would labeled with the center 
positions in the chromosome, and other clusters would 
be rearranged according to the intra-cluster distance 
between that cluster and center cluster. 
 By the above step we guarantee that the most related 
cluster to other generated-clusters is in a middle 
position in the chromosome, so that its variables 
members would be in the middle positions for other 
SAT instance variables. The same technique was used to 
re-arrange variable inside the same cluster, most related 
―popular‖ variable, cluster mediod, is in a middle 
positions for other variables. 

 

3.3 Apply GA for solving SAT problems 

 

In brief, the evolution theory portrays the potential 
solutions (after encode the internal problem variables) 
to satisfy the SAT formula as individuals, each solution 
is evaluated, by external function, to check how close 
that solution to the optimal solution. Best fitted 
individuals are then selected, Parent selection step, to 
generate new population through making crossover 
between individuals and applying mutation to the 
offspring to avoid premature convergence. In order to 
demonstrate the benefits to preprocess SAT instances 
using cluster technique, the knowledge gain used to 
tune genetic operators as the following: 
 

Chromosome Definition: The solution candidate for 
SAT is represented as a bit string of length n, where 
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every variable is associated to one bit, according to the 
position defined by the cluster technique. 
 

Fitness Function: the simplest fitness function used is 
the count of the clauses that are satisfied by the 
candidate solution.  Another fitness function used is 
―Cluster fitness‖ where each cluster has a score of 
Number of satisfied clauses by its members current 
assignment divided on the cluster size.   
 

Crossover operator: would happen between different 
clusters not between Individual, by successively replace 
certain cluster members in one parent with the 
counterpart cluster members of another Parent.  Single 
point crossover was implemented using point position 
proportional to the cluster size. For example: if the 
single point was 0.25 and the cluster size was 20 gene 
then the single point of crossover would be gene 
position number 5 inside the cluster while if the cluster 
size was 100 gene, the crossover single point would be 
in gene position number 25 . 
 

Mutation Operator: As the mutation rate is used to 
maintain the diversity of the entire population [30], we 
suggest use tow static mutation probabilities as the 
following: 

1. Cluster Mutation Probability 
The mutation rate is set independently for every cluster, 
proportionally to the Cluster Size. We experimentally 
notice that the clusters in the chromosome center, which 
indicate higher influence of their members values over 
the whole chromosome, have larger size than the 
clusters in the chromosome borders. So we use the 
following equation to calculate the mutation rate for 
each cluster: 
 
Cluster Mutation Rate = 1 / (N – Cluster Size) 
 
 Where the N is the chromosome Length, No of 
variables, and Cluster Size is the number of genes 
belong to this cluster. 
 

2. Gene Mutation Probability 
 
 A standard normal distribution variable would be used 
to choose the mutation bit position inside each cluster, 
that distribution would make the rate of mutation for 
the genes in the cluster center high ( most related 
variable to others in cluster), and the genes positioned 
on the cluster border ( less related variable) have a 
lower mutation rate. 
 

Parent Selection: Parent selection process depend of 
choosing the best fitted solutions to generate the next 
generation.  The tournament parent selection technique 
is used [11]. For each GA generation Parents, the 
individuals ―solutions‖ would be divided into 2 groups, 
―highly fitted‖ group, that has the best fitted solutions 
of the current generation and ―Less fitted‖ group that 

has the least the best fitted solutions of the current 
generation. In crossover Operator, one Parent would be 
chosen randomly from the ―highly fitted‖ Individuals 
while the other would be chosen randomly from the 
―Less fitted‖ Individuals.  Experimentally, that action 
slows the unmatured convergence of GA and decrees 
the possibility of getting similar solutions with each 
generation.  
 

Replacement scheme: A small group of best ever 
solutions through all the Parents generations, namely 
elitism group, we be kept and updated through each 
new Parents generation. As well as, a small group of 
best ―cluster fitness‖ solutions, namely minority group, 
their size depends on the dataset size.  After the parent 
selection stage finished, the least fitted solutions of 
―highly fitted‖ parents group would be replaced by the 
elitism group. And the least fitted solutions of ―Less 
fitted‖ parents group would be replaced by the minority 
group solutions. A check step is needed before the 
current parents are replaced with the elitism or minority 
groups’ members. If current parent solutions have a 
similar solutions to these groups’ members, then the 
similar solutions would be replaced not the least fitted 
solutions.  This action was taken to keep best ever found 
solution for the SAT problem ―elitism group‖ as it may 
be lost during crossover and mutation operators, plus 
keeping the individuals with best scored parts. As best 
fitted score of the solutions’ parts does not necessarily 
enable the best whole fitted score solutions. 
 

4 EXPERIMENTAL STUDY  

4.1 Design of Experiments 

 

All the Experiments were performed on several instances 
from the DIMACS Benchmark set [29]. The instances used 
are hard instances with the number of clauses (m) and 
variables (n) ratio (m/n) equals 4.26 its descriptions is given 
in Table 1. In order to obtain statistically significant results, 
several runs are required for each benchmark instance under 
consideration, for computation simplicity, 10 independent 
runs were executed for each instance with each technique, 
and the average value is used.  

The experiments ran into an Intel(R) Core(TM) 2 Due CPU 
3.00 with 2.00 GB of RAM, and implemented with C# 
programming language. 

The techniques quality measure should express the 
efficiency of using each GA algorithm with the SAT 
instances, where both, the maximum number of clauses 
satisfied found by each technique, and the computational 
cost required, are taken into consideration. 

For the first measure MCNR (Maximum clause number 
rate), which represents the portion of solution found at each 
run. It measures the percentage of the maximum number of 
satisfied clauses found to the total number of clauses in each 
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instance. While the second measure TR (Time required) 
quantifies the computational cost of each technique by 
measure the average time required to run the technique. 

A classic GA was implemented where its internal 
representation is based on binary strings of length N in 
which the ith bit represents the truth value of the ith  Boolean 
variable of the problem. A Classic genetic operators defined 
by Holland [25], are internally implemented, the 
recombination is done in the standard way using  single 
point Crossover operator with middle gene position 
parameter, a static mutation probability (equals 1/n)  was 
used. While the Parent selection operation was the 
tournament Algorithm.  

While the exact method to solve the BMPG problem take O 
(n K) where k is the bandwidth searched for that graph. An 
Approximate algorithm that does not guarantee to find the 
optimal bandwidth of the graph but, get best bandwidth 
minimization with the given limitation is used [20].  The 
ERA algorithm is sensitive to its parameters, e.g. the 
temperature, the maximum number of accepted moves at 
each temperature, and the cooling rate. The parameters of 
the ERA algorithm, implemented in the following section, 
were chosen experimentally taking into account its authors 
experiments reported results in [21], and some related work 
reported in [31, 32]. 

TABLE 1. TEST INSTANCES 

Seq Instance name n m 
Satisf
iable? 

1 
unif-k3-r4.26-v360-
c1533-S1217224084-
10.SAT.shuffled.cnf 

360 1533 Yes 

2 
unif-k3-r4.26-v360-
c1533-S1373941726-
12.UNSAT.shuffled.cnf 

360 1533 No 

3 
unif-k3-r4.26-v500-
c2130-S539876024-
03.SAT.shuffled.cnf 

500 2130 Yes 

4 
unif-k3-r4.26-v500-
c2130-S1161940794-
17.UNSAT.shuffled.cnf 

500 2130 No 

5 
unif-k3-r4.261-v650-
c2769-S1089058690-
02.SAT.shuffled.cnf 

650 2769 Yes 

6 
unif-k3-r4.261-v650-
c2769-S440198403-
10.UNSAT.shuffled.cnf 

650 2769 No 

7 
unif-k3-r4.26-v800-
c3408-S141590207-
13.SAT.shuffled.cnf 

800 3408 Yes 

8 
unif-k3-r4.26-v800-
c3408-S1013535775-
14.UNSAT.shuffled.cnf 

800 3408 No 

9 
unif-k3-r4.26-v1000-
c4260-S1141835011-
09.SAT.shuffled.cnf 

1000 4260 Yes 

10 
unif-k3-r4.26-v1000-
c4260-S2083146463-
03.UNSAT.shuffled.cnf 

1000 4260 No 

 

4.2 Epistatsis Reducer Effect Experimental 
Results and Analysis  

 

In this section, experiment measures the efficiency of 
reducing GA encoding epistatsis using the proposed 
algorithm compared to bandwidth minimization 
problem for graph (BMPG) algorithm. 
As the objective of the encoding algorithm is to re-label 
the most related variables of the problem and place 
them in closer positions inside the chromosome. Then 
we expect that the absolute difference between labels of 
different variable related into one clause in the SAT 
instances will be reduced. A new measure βA will be 
defined and used to quantify the SAT variables 
epistatsis generated due to their different positions with 
each technique.  
The classic GA algorithm will measure the original SAT 
instance variable labeling difference, while both the 
ERA and cluster techniques will be ran on original SAT 
instance first, then βA will be measured using the new 
re-labeled SAT instance.  
For each clause in the SAT Problem, the difference 
between the 3 variables label will be calculated. By 
subtract the absolute value of each variable label in the 
clause and the absolute value of neighbors’ variables. 
Then sum is carried out for all the absolute clauses’ 
values of the SAT instance, and divided by (3 * clauses 
number) to get the average βA.  For Example, in the 
following clause (x1, -x8, x13), the difference between 
the 3 variables label will be equals |1-8| + |1-13| + |8-
13|=24, and as we have the summation of 3 different 
variable labels’ epistatsis, the average βA will be 
calculated as 24/3= 6 for this clause. By measure the 
average for all SAT instance clauses, with different 
encoding algorithms, we may get good indicator of the 
efficient performance of GA based on its variables 
epistatsis values. 
Table 2 presents the comparison between the proposed 
algorithm in this research, namely CLU, and the ERA 
Algorithm. Data included are: Seq. of the formula; 
average variables epistatsis βA obtained with the 
original SAT problem and different encoding 
algorithms; the CPU time in seconds used by the 
encoding algorithms is Tβ .  
 
TABLE 2 AVERAGE VARIABLES EPISTATSIS AND CPU TIME IN 

SECONDS MEASUREMENTS FOR ERA && CLU 

Seq. 
Initial SAT 

βA 

ERA 

βA 

ERA 

Tβ 

CLU  

βA 
CLU Tβ. 
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1 100 60 220 64 80 

2 102 63 260 69 80 

3 134 90 320 98 96 

4 138 95 380 103 96 

5 184 142 520 148 110 

6 188 148 540 152 110 

7 226 192 760 196 130 

8 220 196 790 203 130 

9 292 248 920 252 150 

10 295 254 920 260 150 

 

The results of experimentation presented showed that 
the ERA Algorithm outperforms the CLU algorithm in 
reducing the average encoding epistatsis, but with 
insignificant amount; while in computing time, CLU 
algorithm outperforms the ERA with tremendous 
amount especially when increasing the problem size, 
number of SAT variables.  

 

 

      Fig 1: Average variables epiststsis versus computation time  

Figure 1 showed results, the X- axis represents the 
Average variables epistatsis βA while the Y-axis 
represents the computing time in seconds required by 
the two algorithms. 
Additionally, we notice that the unsatisfiable problems 
have higher average encoding epistatsis with the 
original problem, as well as, for both algorithms used to 
re-encode the problem.  
We notice also that CLU algorithm running time does 
not affected; if the original problem is satisfiable, or not, 
while ERA affected negatively if the problem is 
unsatisfiable 

 

4.3 Epistatsis Reducer   Effect Experimental 
Results and Analysis  

 

In this section, experiment measures the search 
efficiency of the proposed CLU+GA technique in 
solving SAT problem. The proposed algorithm will be 

tested compared to ERA+GA algorithm, as well as, the 
classic genetic algorithm.  
Data included are: Seq. of the formula; the number of 
max satisfied clauses rate, for each approach, and the 
CPU time in seconds, for each approach. It is important 
to remark that the times presented in the next table for 
the combined approach in the column TR measure takes 
into account the CPU time used for the preprocessing 
step in case ERA+GA, or CLU+GA. 

 

TABLE 3 AVERAGE MAX CLAUSES SATISFIED AND CPU TIME IN 

SECONDS MEASUREMENTS FOR ERA && CLU && GA 

Seq. 
GA 

βA 

GA 

TS 

ERA 

βA 

ERA 

TS 

CLU  

βA 

CLU 

TS. 

1 0.556 230 0.576 320 0.769 240 

2 0.558 460 0.570 660 0.766 510 

3 0.421 280 0.526 488 0.754 260 

4 0.418 780 0.522 980 0.742 820 

5 0.394 540 0.512 690 0.718 500 

6 0.411 1220 0.509 1780 0.715 1280 

7 0.381 840 0.506 960 0.646 620 

8 0.397 2000 0.501 2440 0.645 2120 

9 0.366 1020 0.502 1250 0.62 850 

10 0.388 2560 0.503 3000 0.617 2630 

 

As the unsatisfied SAT problems make the three algorithms 
reach their run-time end-condition limitation without find a 
suitable answer, the batch of unsatisfied instances reported 
separately than the satisfied instances.  
 

 
 

Fig. 2 Satisfied instance MCSR measure 
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Figure 3 Unsatisfied instance MCSR measure 

Figure 2, 3 represent the Max clause rate Satisfied by each 
technique.  The X-axis represents the instance seq. used from 
table 1, while the Y-axis represents the portion of clauses 
satisfied by each algorithm, compare to the total clauses 
number. It is noticed that the natural of the problem does 
not affect the three algorithms performance, as similar size 
SAT problem, satisfied or not, almost have similar MCSR 
measurements. Satisfied Problems usually have higher 
MCSR. While The problem size, affect the three algorithms 
in negative way as the three algorithms have a descending 
performance, increase in computation time, with increasing 
the number of variables, while CLU has less affected with 
the problem size, the classic genetic algorithms has a serious 
impacted by the problem size which increase our intuitive 
that merge the CLU+GA with Local search will increase the 
efficiency of using GA as a heuristic algorithm to solve SAT 
problem. 
 
Figure 4, 5 represent the computation time by each 
technique.  The X-axis represents the instance seq. used from 
table 1, while the Y-axis represents the CPU time consumed 
by each algorithm. The natural of the problem, satisfied or 
not, affect differently the computation time consumed by 
each algorithm. While CLU+GA run faster than the classic 
GA in the satisfied instances, it take more time in case of the 
unsatisfied, we believe that the CLU+GA can solve the SAT 
problem faster than the GA, while in the unsatisfied 
instances it bear the computation time of the pre-processing 
step, cluster algorithm, plus running the GA with the tuned 
operators. The Preprocess ERA algorithm consume a lot of 
computation time especially when increase the SAT problem 
size, that make the ERA+GA the highest time consuming 
algorithm. 
 

 

 
 

Figure 4 Satisfied instance CPU time measure 

 

 
 

Figure 5 Unsatisfied instance CPU time measure 

 

To conclude, the results of experimentation presented 
showed that the combined approach CLU+GA outperforms 
the ERA+GA algorithm, as well as, simple GA in all the tests 
accomplished, not only in solution quality but also in 
computing time.  
 

5 CONCLUSIONS  

 

This Paper is a part of an extended research, where the 
paper presents a first part of an incomplete SAT solver, that 
explore a hybrid approach which combining ideas from 
Evolution Algorithms and local search techniques. 
In this paper, we investigate the possibility of increase the 
EAs search efficiency by encoding the problem and use this 
encoding technique to tune the EAs operators (parent 
selection, mutation, crossover, and replacement scheme). 
This approach has been compared versus a simple GA 
without preprocessing and versus ERA+GA techniques 
using a set of SAT instances.  Also it was encourage to 
complete the research of hybrid the new GA techniques with 
other techniques, e.g. local search, to improve the 
Incomplete SAT Solver efficiency.  
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